Clinical use of bone-targeting radiopharmaceuticals with focus on alpha-emitters.

نویسندگان

  • Hinrich A Wieder
  • Michael Lassmann
  • Martin S Allen-Auerbach
  • Johannes Czernin
  • Ken Herrmann
چکیده

Various single or multi-modality therapeutic options are available to treat pain of bone metastasis in patients with prostate cancer. Different radionuclides that emit β-rays such as (153)Samarium and (89)Strontium and achieve palliation are commercially available. In contrast to β-emitters, (223)Radium as a α-emitter has a short path-length. The advantage of the α-emitter is thus a highly localized biological effect that is caused by radiation induced DNA double-strand breaks and subsequent cell killing and/or limited effectiveness of cellular repair mechanisms. Due to the limited range of the α-particles the bone surface to red bone marrow dose ratio is also lower for (223)Radium which is expressed in a lower myelotoxicity. The α emitter (223)Radium dichloride is the first radiopharmaceutical that significantly prolongs life in castrate resistant prostate cancer patients with wide-spread bone metastatic disease. In a phase III, randomized, double-blind, placebo-controlled study 921 patients with castration-resistant prostate cancer and bone metastases were randomly assigned. The analysis confirmed the (223)Radium survival benefit compared to the placebo (median, 14.9 mo vs 11.3 mo; P < 0.001). In addition, the treatment results in pain palliation and thus, improved quality of life and a delay of skeletal related events. At the same time the toxicity profile of (223)Radium was favourable. Since May 2013, (223)Radium dichloride (Xofigo(®)) is approved by the US Food and Drug Administration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progress in Targeted Alpha-Particle Therapy. What We Learned about Recoils Release from In Vivo Generators.

This review summarizes recent progress and developments as well as the most important pitfalls in targeted alpha-particle therapy, covering single alpha-particle emitters as well as in vivo alpha-particle generators. It discusses the production of radionuclides like 211At, 223Ra, 225Ac/213Bi, labelling and delivery employing various targeting vectors (small molecules, chelators for alpha-emitti...

متن کامل

Bone-seeking radiopharmaceuticals for treatment of osseous metastases, Part 1: α therapy with 223Ra-dichloride.

Metastatic disease to bone is commonly seen in the advanced stages of many cancers. The cardinal symptom, pain, is often the cause of significant morbidity and reduced quality of life. Treatment of bone pain includes nonsteroidal analgesics and opiates; however, long-term use of these drugs is commonly associated with significant side effects, and tolerance is common. External-beam radiation th...

متن کامل

MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy.

The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides and radionuclide conjugation chemistry, and the increased availability of alpha-emitters appropriate for clinical use, have recently led to patient trials of radiopharmaceuticals labeled with alpha-particle emitters. Although alpha-emitters have ...

متن کامل

Production, Radiolabeling and Biodistribution Studies of 175Yb-DOTMP as Bone Pain Palliation

      Bone is the third most common site of metastatic disease. Bone pain is the major source of morbidity associated bone metastasis. Bone-seeking radiopharma- ceuticals have been applied for many years. The ability to simultaneously treat multiple sites of disease with a more probable therapeutic effect in earlier phases of metastatic disease is one of the advantages of radiopharmaceuticals. ...

متن کامل

An overview on Ga-68 radiopharmaceuticals for positron emission tomography applications

Gallium-68 a positron emitter radionuclide, with great impact on the nuclear medicine, has been widely used in positron emission tomography (PET) diagnosis of various malignancies in humans during more recent years especially in neuroendocrine tumors (NETs). The vast number of 68Ge/68Ga related generator productions, targeting molecule design (proteins, antibody fragments,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • World journal of radiology

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 2014